Shanxi Normal University, Taiyuan, China
Abstract:Large Language Models have demonstrated remarkable capabilities in open-domain dialogues. However, current methods exhibit suboptimal performance in service dialogues, as they rely on noisy, low-quality human conversation data. This limitation arises from data scarcity and the difficulty of simulating authentic, goal-oriented user behaviors. To address these issues, we propose SEAD (Self-Evolving Agent for Service Dialogue), a framework that enables agents to learn effective strategies without large-scale human annotations. SEAD decouples user modeling into two components: a Profile Controller that generates diverse user states to manage training curriculum, and a User Role-play Model that focuses on realistic role-playing. This design ensures the environment provides adaptive training scenarios rather than acting as an unfair adversary. Experiments demonstrate that SEAD significantly outperforms Open-source Foundation Models and Closed-source Commercial Models, improving task completion rate by 17.6% and dialogue efficiency by 11.1%. Code is available at: https://github.com/Da1yuqin/SEAD.
Abstract:While Large Reasoning Models (LRMs) have demonstrated impressive capabilities in solving complex tasks through the generation of long reasoning chains, this reliance on verbose generation results in significant latency and computational overhead. To address these challenges, we propose \textbf{CoSMo} (\textbf{Co}nsistency-Guided \textbf{S}plit-\textbf{M}erge \textbf{O}ptimization), a framework designed to eliminate structural redundancy rather than indiscriminately restricting token volume. Specifically, CoSMo utilizes a split-merge algorithm that dynamically refines reasoning chains by merging redundant segments and splitting logical gaps to ensure coherence. We then employ structure-aligned reinforcement learning with a novel segment-level budget to supervise the model in maintaining efficient reasoning structures throughout training. Extensive experiments across multiple benchmarks and backbones demonstrate that CoSMo achieves superior performance, improving accuracy by \textbf{3.3} points while reducing segment usage by \textbf{28.7\%} on average compared to reasoning efficiency baselines.
Abstract:Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
Abstract:Against the backdrop of the global green transition and "dual carbon" goals, mining industry chain enterprises are pivotal entities in terms of resource consumption and environmental impact. Their environmental performance directly affects regional ecological security and is closely tied to national resource strategies and green transformation outcomes. Ensuring the authenticity and reliability of their environmental disclosure is thus a core and urgent issue for sustainable development and national strategic objectives.From a corporate governance perspective, this study examines equity balance as a fundamental governance mechanism, investigating its inhibitory effect on greenwashing behavior among these enterprises and the underlying pathways involved. Methodologically, the paper innovatively employs a Variational Autoencoder (VAE) and a Double Machine Learning (DML) model to construct counterfactual scenarios, mitigating endogeneity concerns and precisely identifying the causal relationship between equity balance and greenwashing. The findings indicate, first, a significant negative causal relationship between equity balance and corporate greenwashing, confirming its substantive governance effect. Second, this inhibitory effect exhibits notable heterogeneity, manifesting more strongly in western regions, upstream segments of the industrial chain, and industries with high environmental sensitivity. Third, the governance effect demonstrates clear temporal dynamics, with the strongest impact occurring in the current period, followed by a diminishing yet statistically significant lagged effect, and ultimately a stable long-term cumulative influence. Finally, mechanism analysis reveals that equity balance operates through three distinct channels to curb greenwashing: alleviating management performance pressure, enhancing the stability of the executive team, and intensifying media scrutiny.
Abstract:Attention patterns play a crucial role in both training and inference of large language models (LLMs). Prior works have identified individual patterns such as retrieval heads, sink heads, and diagonal traces, yet these observations remain fragmented and lack a unifying explanation. To bridge this gap, we introduce \textbf{Temporal Attention Pattern Predictability Analysis (TAPPA), a unifying framework that explains diverse attention patterns by analyzing their underlying mathematical formulations} from a temporally continuous perspective. TAPPA both deepens the understanding of attention behavior and guides inference acceleration approaches. Specifically, TAPPA characterizes attention patterns as predictable patterns with clear regularities and unpredictable patterns that appear effectively random. Our analysis further reveals that this distinction can be explained by the degree of query self-similarity along the temporal dimension. Focusing on the predictable patterns, we further provide a detailed mathematical analysis of three representative cases through the joint effect of queries, keys, and Rotary Positional Embeddings (RoPE). We validate TAPPA by applying its insights to KV cache compression and LLM pruning tasks. Across these tasks, a simple metric motivated by TAPPA consistently improves performance over baseline methods. The code is available at https://github.com/MIRALab-USTC/LLM-TAPPA.
Abstract:Adapting Large Language Models (LLMs) to specialized domains without human-annotated data is a crucial yet formidable challenge. Widely adopted knowledge distillation methods often devolve into coarse-grained mimicry, where the student model inefficiently targets its own weaknesses and risks inheriting the teacher's reasoning flaws. This exposes a critical pedagogical dilemma: how to devise a reliable curriculum when the teacher itself is not an infallible expert. Our work resolves this by capitalizing on a key insight: while LLMs may exhibit fallibility in complex, holistic reasoning, they often exhibit high fidelity on focused, atomic sub-problems. Based on this, we propose Divergence-Guided Reasoning Curriculum (DGRC), which constructs a learning path from atomic knowledge to reasoning chains by dynamically deriving two complementary curricula from disagreements in reasoning pathways. When a student and teacher produce conflicting results, DGRC directs the teacher to perform a diagnostic analysis: it analyzes both reasoning paths to formulate atomic queries that target the specific points of divergence, and then self-answers these queries to create high-confidence atomic question-answer pairs. These pairs then serve a dual purpose: (1) providing an atomic curriculum to rectify the student's knowledge gaps, and (2) serving as factual criteria to filter the teacher's original reasoning chains, yielding a verified CoT curriculum that teaches the student how to integrate atomic knowledge into complete reasoning paths. Experiments across the medical and legal domains on student models of various sizes demonstrate the effectiveness of our DGRC framework. Notably, our method achieves a 7.76% relative improvement for the 1.5B student model in the medical domain over strong unlabeled baseline.
Abstract:Sample Exploring the ocean environment holds profound significance in areas such as resource exploration and ecological protection. Underwater robots struggle with extreme water pressure and often cause noise and damage to the underwater ecosystem, while bio-inspired soft robots draw inspiration from aquatic creatures to address these challenges. These bio-inspired approaches enable robots to withstand high water pressure, minimize drag, operate with efficient manipulation and sensing systems, and interact with the environment in an eco-friendly manner. Consequently, bio-inspired soft robots have emerged as a promising field for ocean exploration. This paper reviews recent advancements in underwater bio-inspired soft robots, analyses their design considerations when facing different desired functions, bio-inspirations, ambient pressure, temperature, light, and biodiversity , and finally explores the progression from bio-inspired principles to practical applications in the field and suggests potential directions for developing the next generation of underwater soft robots.
Abstract:The rapid evolution of satellite-borne Earth Observation (EO) systems has revolutionized terrestrial monitoring, yielding petabyte-scale archives. However, the immense computational and storage requirements for global-scale analysis often preclude widespread use, hindering planetary-scale studies. To address these barriers, we present Embedded Seamless Data (ESD), an ultra-lightweight, 30-m global Earth embedding database spanning the 25-year period from 2000 to 2024. By transforming high-dimensional, multi-sensor observations from the Landsat series (5, 7, 8, and 9) and MODIS Terra into information-dense, quantized latent vectors, ESD distills essential geophysical and semantic features into a unified latent space. Utilizing the ESDNet architecture and Finite Scalar Quantization (FSQ), the dataset achieves a transformative ~340-fold reduction in data volume compared to raw archives. This compression allows the entire global land surface for a single year to be encapsulated within approximately 2.4 TB, enabling decadal-scale global analysis on standard local workstations. Rigorous validation demonstrates high reconstructive fidelity (MAE: 0.0130; RMSE: 0.0179; CC: 0.8543). By condensing the annual phenological cycle into 12 temporal steps, the embeddings provide inherent denoising and a semantically organized space that outperforms raw reflectance in land-cover classification, achieving 79.74% accuracy (vs. 76.92% for raw fusion). With robust few-shot learning capabilities and longitudinal consistency, ESD provides a versatile foundation for democratizing planetary-scale research and advancing next-generation geospatial artificial intelligence.
Abstract:Accurate wetland mapping is essential for ecosystem monitoring, yet dense pixel-level annotation is prohibitively expensive and practical applications usually rely on sparse point labels, under which existing deep learning models perform poorly, while strong seasonal and inter-annual wetland dynamics further render single-date imagery inadequate and lead to significant mapping errors; although foundation models such as SAM show promising generalization from point prompts, they are inherently designed for static images and fail to model temporal information, resulting in fragmented masks in heterogeneous wetlands. To overcome these limitations, we propose WetSAM, a SAM-based framework that integrates satellite image time series for wetland mapping from sparse point supervision through a dual-branch design, where a temporally prompted branch extends SAM with hierarchical adapters and dynamic temporal aggregation to disentangle wetland characteristics from phenological variability, and a spatial branch employs a temporally constrained region-growing strategy to generate reliable dense pseudo-labels, while a bidirectional consistency regularization jointly optimizes both branches. Extensive experiments across eight global regions of approximately 5,000 km2 each demonstrate that WetSAM substantially outperforms state-of-the-art methods, achieving an average F1-score of 85.58%, and delivering accurate and structurally consistent wetland segmentation with minimal labeling effort, highlighting its strong generalization capability and potential for scalable, low-cost, high-resolution wetland mapping.
Abstract:In this paper, we introduce a framework for contextual distributionally robust optimization (DRO) that considers the causal and continuous structure of the underlying distribution by developing interpretable and tractable decision rules that prescribe decisions using covariates. We first introduce the causal Sinkhorn discrepancy (CSD), an entropy-regularized causal Wasserstein distance that encourages continuous transport plans while preserving the causal consistency. We then formulate a contextual DRO model with a CSD-based ambiguity set, termed Causal Sinkhorn DRO (Causal-SDRO), and derive its strong dual reformulation where the worst-case distribution is characterized as a mixture of Gibbs distributions. To solve the corresponding infinite-dimensional policy optimization, we propose the Soft Regression Forest (SRF) decision rule, which approximates optimal policies within arbitrary measurable function spaces. The SRF preserves the interpretability of classical decision trees while being fully parametric, differentiable, and Lipschitz smooth, enabling intrinsic interpretation from both global and local perspectives. To solve the Causal-SDRO with parametric decision rules, we develop an efficient stochastic compositional gradient algorithm that converges to an $\varepsilon$-stationary point at a rate of $O(\varepsilon^{-4})$, matching the convergence rate of standard stochastic gradient descent. Finally, we validate our method through numerical experiments on synthetic and real-world datasets, demonstrating its superior performance and interpretability.