Jack
Abstract:Internal defect detection constitutes a critical process in ensuring component quality, for which anomaly detection serves as an effective solution. However, existing anomaly detection datasets predominantly focus on surface defects in visible-light images, lacking publicly available X-ray datasets targeting internal defects in components. To address this gap, we construct the first publicly accessible component X-ray anomaly detection (CXR-AD) dataset, comprising real-world X-ray images. The dataset covers five industrial component categories, including 653 normal samples and 561 defect samples with precise pixel-level mask annotations. We systematically analyze the dataset characteristics and identify three major technical challenges: (1) strong coupling between complex internal structures and defect regions, (2) inherent low contrast and high noise interference in X-ray imaging, and (3) significant variations in defect scales and morphologies. To evaluate dataset complexity, we benchmark three state-of-the-art anomaly detection frameworks (feature-based, reconstruction-based, and zero-shot learning methods). Experimental results demonstrate a 29.78% average performance degradation on CXR-AD compared to MVTec AD, highlighting the limitations of current algorithms in handling internal defect detection tasks. To the best of our knowledge, CXR-AD represents the first publicly available X-ray dataset for component anomaly detection, providing a real-world industrial benchmark to advance algorithm development and enhance precision in internal defect inspection technologies.
Abstract:Recent advancements have significantly enhanced the performance of large language models (LLMs) in tackling complex reasoning tasks, achieving notable success in domains like mathematical and logical reasoning. However, these methods encounter challenges with complex planning tasks, primarily due to extended reasoning steps, diverse constraints, and the challenge of handling multiple distinct sub-tasks. To address these challenges, we propose HyperTree Planning (HTP), a novel reasoning paradigm that constructs hypertree-structured planning outlines for effective planning. The hypertree structure enables LLMs to engage in hierarchical thinking by flexibly employing the divide-and-conquer strategy, effectively breaking down intricate reasoning steps, accommodating diverse constraints, and managing multiple distinct sub-tasks in a well-organized manner. We further introduce an autonomous planning framework that completes the planning process by iteratively refining and expanding the hypertree-structured planning outlines. Experiments demonstrate the effectiveness of HTP, achieving state-of-the-art accuracy on the TravelPlanner benchmark with Gemini-1.5-Pro, resulting in a 3.6 times performance improvement over o1-preview.
Abstract:The integration of reinforcement learning (RL) into the reasoning capabilities of Multimodal Large Language Models (MLLMs) has rapidly emerged as a transformative research direction. While MLLMs significantly extend Large Language Models (LLMs) to handle diverse modalities such as vision, audio, and video, enabling robust reasoning across multimodal inputs remains a major challenge. This survey systematically reviews recent advances in RL-based reasoning for MLLMs, covering key algorithmic designs, reward mechanism innovations, and practical applications. We highlight two main RL paradigms--value-free and value-based methods--and analyze how RL enhances reasoning abilities by optimizing reasoning trajectories and aligning multimodal information. Furthermore, we provide an extensive overview of benchmark datasets, evaluation protocols, and existing limitations, and propose future research directions to address current bottlenecks such as sparse rewards, inefficient cross-modal reasoning, and real-world deployment constraints. Our goal is to offer a comprehensive and structured guide to researchers interested in advancing RL-based reasoning in the multimodal era.
Abstract:Existing co-salient object detection (CoSOD) methods generally employ a three-stage architecture (i.e., encoding, consensus extraction & dispersion, and prediction) along with a typical full fine-tuning paradigm. Although they yield certain benefits, they exhibit two notable limitations: 1) This architecture relies on encoded features to facilitate consensus extraction, but the meticulously extracted consensus does not provide timely guidance to the encoding stage. 2) This paradigm involves globally updating all parameters of the model, which is parameter-inefficient and hinders the effective representation of knowledge within the foundation model for this task. Therefore, in this paper, we propose an interaction-effective and parameter-efficient concise architecture for the CoSOD task, addressing two key limitations. It introduces, for the first time, a parameter-efficient prompt tuning paradigm and seamlessly embeds consensus into the prompts to formulate task-specific Visual Consensus Prompts (VCP). Our VCP aims to induce the frozen foundation model to perform better on CoSOD tasks by formulating task-specific visual consensus prompts with minimized tunable parameters. Concretely, the primary insight of the purposeful Consensus Prompt Generator (CPG) is to enforce limited tunable parameters to focus on co-salient representations and generate consensus prompts. The formulated Consensus Prompt Disperser (CPD) leverages consensus prompts to form task-specific visual consensus prompts, thereby arousing the powerful potential of pre-trained models in addressing CoSOD tasks. Extensive experiments demonstrate that our concise VCP outperforms 13 cutting-edge full fine-tuning models, achieving the new state of the art (with 6.8% improvement in F_m metrics on the most challenging CoCA dataset). Source code has been available at https://github.com/WJ-CV/VCP.
Abstract:Feature matching across video streams remains a cornerstone challenge in computer vision. Increasingly, robust multimodal matching has garnered interest in robotics, surveillance, remote sensing, and medical imaging. While traditional rely on detecting and matching spatial features, they break down when faced with noisy, misaligned, or cross-modal data. Recent deep learning methods have improved robustness through learned representations, but remain constrained by their dependence on extensive training data and computational demands. We present Flow Intelligence, a paradigm-shifting approach that moves beyond spatial features by focusing on temporal motion patterns exclusively. Instead of detecting traditional keypoints, our method extracts motion signatures from pixel blocks across consecutive frames and extract temporal motion signatures between videos. These motion-based descriptors achieve natural invariance to translation, rotation, and scale variations while remaining robust across different imaging modalities. This novel approach also requires no pretraining data, eliminates the need for spatial feature detection, enables cross-modal matching using only temporal motion, and it outperforms existing methods in challenging scenarios where traditional approaches fail. By leveraging motion rather than appearance, Flow Intelligence enables robust, real-time video feature matching in diverse environments.
Abstract:Wetlands constitute critical ecosystems that support both biodiversity and human well-being; however, they have experienced a significant decline since the 20th century. Back in the 1970s, researchers began to employ remote sensing technologies for wetland classification and mapping to elucidate the extent and variations of wetlands. Although some review articles summarized the development of this field, there is a lack of a thorough and in-depth understanding of wetland classification and mapping: (1) the scientific importance of wetlands, (2) major data, methods used in wetland classification and mapping, (3) driving factors of wetland changes, (4) current research paradigm and limitations, (5) challenges and opportunities in wetland classification and mapping under the context of technological innovation and global environmental change. In this review, we aim to provide a comprehensive perspective and new insights into wetland classification and mapping for readers to answer these questions. First, we conduct a meta-analysis of over 1,200 papers, encompassing wetland types, methods, sensor types, and study sites, examining prevailing trends in wetland classification and mapping. Next, we review and synthesize the wetland features and existing data and methods in wetland classification and mapping. We also summarize typical wetland mapping products and explore the intrinsic driving factors of wetland changes across multiple spatial and temporal scales. Finally, we discuss current limitations and propose future directions in response to global environmental change and technological innovation. This review consolidates our understanding of wetland remote sensing and offers scientific recommendations that foster transformative progress in wetland science.
Abstract:Evaluating the ability of large language models (LLMs) to handle extended contexts is critical, particularly for retrieving information relevant to specific queries embedded within lengthy inputs. We introduce Sequential-NIAH, a benchmark specifically designed to evaluate the capability of LLMs to extract sequential information items (known as needles) from long contexts. The benchmark comprises three types of needle generation pipelines: synthetic, real, and open-domain QA. It includes contexts ranging from 8K to 128K tokens in length, with a dataset of 14,000 samples (2,000 reserved for testing). To facilitate evaluation on this benchmark, we trained a synthetic data-driven evaluation model capable of evaluating answer correctness based on chronological or logical order, achieving an accuracy of 99.49% on synthetic test data. We conducted experiments on six well-known LLMs, revealing that even the best-performing model achieved a maximum accuracy of only 63.15%. Further analysis highlights the growing challenges posed by increasing context lengths and the number of needles, underscoring substantial room for improvement. Additionally, noise robustness experiments validate the reliability of the benchmark, making Sequential-NIAH an important reference for advancing research on long text extraction capabilities of LLMs.
Abstract:Extractive reading comprehension systems are designed to locate the correct answer to a question within a given text. However, a persistent challenge lies in ensuring these models maintain high accuracy in answering questions while reliably recognizing unanswerable queries. Despite significant advances in large language models (LLMs) for reading comprehension, this issue remains critical, particularly as the length of supported contexts continues to expand. To address this challenge, we propose an innovative data augmentation methodology grounded in a multi-agent collaborative framework. Unlike traditional methods, such as the costly human annotation process required for datasets like SQuAD 2.0, our method autonomously generates evidence-based question-answer pairs and systematically constructs unanswerable questions. Using this methodology, we developed the FactGuard-Bench dataset, which comprises 25,220 examples of both answerable and unanswerable question scenarios, with context lengths ranging from 8K to 128K. Experimental evaluations conducted on seven popular LLMs reveal that even the most advanced models achieve only 61.79% overall accuracy. Furthermore, we emphasize the importance of a model's ability to reason about unanswerable questions to avoid generating plausible but incorrect answers. By implementing efficient data selection and generation within the multi-agent collaborative framework, our method significantly reduces the traditionally high costs associated with manual annotation and provides valuable insights for the training and optimization of LLMs.
Abstract:Point cloud video perception has become an essential task for the realm of 3D vision. Current 4D representation learning techniques typically engage in iterative processing coupled with dense query operations. Although effective in capturing temporal features, this approach leads to substantial computational redundancy. In this work, we propose a framework, named as PvNeXt, for effective yet efficient point cloud video recognition, via personalized one-shot query operation. Specially, PvNeXt consists of two key modules, the Motion Imitator and the Single-Step Motion Encoder. The former module, the Motion Imitator, is designed to capture the temporal dynamics inherent in sequences of point clouds, thus generating the virtual motion corresponding to each frame. The Single-Step Motion Encoder performs a one-step query operation, associating point cloud of each frame with its corresponding virtual motion frame, thereby extracting motion cues from point cloud sequences and capturing temporal dynamics across the entire sequence. Through the integration of these two modules, {PvNeXt} enables personalized one-shot queries for each frame, effectively eliminating the need for frame-specific looping and intensive query processes. Extensive experiments on multiple benchmarks demonstrate the effectiveness of our method.
Abstract:Recognizing symbols in architectural CAD drawings is critical for various advanced engineering applications. In this paper, we propose a novel CAD data annotation engine that leverages intrinsic attributes from systematically archived CAD drawings to automatically generate high-quality annotations, thus significantly reducing manual labeling efforts. Utilizing this engine, we construct ArchCAD-400K, a large-scale CAD dataset consisting of 413,062 chunks from 5538 highly standardized drawings, making it over 26 times larger than the largest existing CAD dataset. ArchCAD-400K boasts an extended drawing diversity and broader categories, offering line-grained annotations. Furthermore, we present a new baseline model for panoptic symbol spotting, termed Dual-Pathway Symbol Spotter (DPSS). It incorporates an adaptive fusion module to enhance primitive features with complementary image features, achieving state-of-the-art performance and enhanced robustness. Extensive experiments validate the effectiveness of DPSS, demonstrating the value of ArchCAD-400K and its potential to drive innovation in architectural design and construction.